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We present a new method of extracting electron-boson spectral function α2F(ω) from infrared and
photoemission data. This procedure is based on inverse theory and will be shown to be superior to
previous techniques. Numerical implementation of the algorithm is presented in detail and then used
to accurately determine the doping and temperature dependence of the spectral function in several
families of high-Tc superconductors. Principal limitations of extracting α2F(ω) from experimental
data will be pointed out. We directly compare the IR and ARPES α2F(ω) and discuss the resonance
structure in the spectra in terms of existing theoretical models.

PACS numbers: 74.25.-q, 74.25.Gz, 78.30.-j

I. INTRODUCTION

The electron-boson spectral function is one of the most
important properties of a BCS superconductor1. In con-
ventional superconductors the electron-phonon spectral
function has been successfully obtained using tunneling2

and infrared (IR) spectroscopy3,4,5. The situation is more
complicated in cuprates where the mechanism of super-
conductivity is still a matter of debate. Based on IR
data it was suggested very early that charge carriers
in cuprates might be strongly coupled to some collec-
tive boson mode6. It was subsequently proposed that
this collective mode might be magnetic in origin7,8,9.
Within this scenario electrons are strongly coupled to
a so called “41meV” resonance peak observed in INS
(Refs. 10,11). The peak is believed to originate from an-
tiferromagnetic spin fluctuations that persist into the su-
perconducting state; coupling of electrons to this mode in
turn leads to Cooper pairing. However recently this view
was challenged by a proposal that charge carriers might
be strongly coupled to phonons12,13,14,15. This controver-
sial suggestion has revitalized the debate about whether a
collective boson mode is responsible for superconductiv-
ity in the cuprates. An accurate and reliable determina-
tion of the electron–boson spectral function has become
essential.

In this paper we propose a new way of extracting the
spectral function from IR and Angular Resolved Pho-
toemission Spectroscopy (ARPES) data. The proposed
method is based on inverse theory16, and will be shown to
have numerous advantages over previously employed pro-
cedures. An advantage of the method is that it eliminates
the need for differentiation of the data, that was previ-
ously the most serious problem. The inversion algorithm
uncovers extreme sensitivity of the solution to smooth-
ing, and offers a smoothing procedure which eliminates
arbitrariness. Since the spectral function is convoluted
in the experimental data, some information is inevitably

lost; we will use inverse theory to set the limits on useful
information that can be extracted from the data. Unlike
previous techniques which are valid only at T= 0K, the
new method can be applied at any temperature.

The paper is organized as follows. First in Section II
we outline the numerical procedure of solving integral
equations. In Section III we demonstrate the usefulness
of the new method by applying it to previously published
data for YBa2Cu3O7−δ (Y123). In Section IV model
calculations of spectral function will unveil some impor-
tant problems encountered when solving integral equa-
tions. Section V discusses the origin of negative values
in the spectral function and methods for dealing with
them. In Section VI the effect superconducting energy
gap has on the spectral function will be analyzed. In
Section VII we study the temperature dependence of the
spectral function for optimally doped Bi2Sr2CaCu2O8+δ

(Bi2212). In Section VIII inverse theory is applied to
ARPES data and the spectral function of molybdenum
surface Mo(110) and Bi2212 have been studied. Finally,
Section IX contains quantitative comparison of the spec-
tral functions of optimally doped Bi2212, extracted from
both IR and ARPES data; the observed results are crit-
ically compared against existing theoretical models. In
Section X we summarize all the major results.

II. NUMERICAL PROCEDURE

The (optical) scattering rate of electrons in the pres-
ence of electron-phonon coupling at T=0K is given by
famous Allen’s result19:

1

τ(ω)
=

2π

ω

∫ ω

0

dΩ(ω − Ω)α2F (Ω), (1)

where α2F(ω) is the electron-phonon spectral function.
The scattering rate 1/τ(ω) can be obtained from complex
optical conductivity σ(ω) = σ1(ω) + iσ2(ω):
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1

τ(ω)
=

ω2
p

4π

σ1(ω)

σ2
1(ω) + σ2

2(ω)
, (2)

where ωp is the conventional plasma frequency. Recently
Marsiglio, Startseva and Carbotte5 have defined a func-
tion W(ω):

W (ω) =
1

2π

d2

dω2

[

ω ·
1

τ(ω)

]

, (3)

which they claim to be W(ω)≈α2F(ω) in the phonon
region5. It is easy to show (by substitution, for exam-
ple) that Allen’s formula Eq. (1) and Eq. (3) are equiv-
alent expressions, provided 1/τ(ω = 0)=0. Eq. (3) is
frequently used to extract the spectral function in the
cuprates from IR data8,21,22,23,24,25,26. Obviously this
method introduces significant numerical difficulty since
the second derivative of the data is needed. The experi-
mental data must be (ambiguously) smoothed “by hand”
before Eq. (3) can be applied, otherwise the noise will be
amplified by (double) differentiation and will completely
dominate the solution. An alternative approach is to fit
the scattering rate with polynomials and then perform
differentiation analytically26,27. Note also that although
Eq. (3) is valid only at T= 0K, it is frequently applied to
higher T, even at room temperature.

Here we propose a new method of extracting the spec-
tral function. It is based on the following formula for the
scattering rate at finite temperatures derived by Shulga
et al.28,29:

1

τ(ω, T )
=

π

ω

∫

∞

0

dΩα2F (Ω, T )
[

2ω coth
( Ω

2T

)

−

(ω + Ω) coth
(ω + Ω

2T

)

+ (ω − Ω) coth
(ω − Ω

2T

)]

,

(4)

which in the limit T→ 0K reduces to Allen’s result
Eq. (1) (Ref. 20). Unlike Eq. (1) which has a differ-
ential form Eq. (3), there is no such simple expression
for Eq. (4). Therefore in order to obtain α2F(ω) from
Eq. (4) one must apply inverse theory30. Like most in-
verse problems, obtaining the spectral function from the
scattering rate data is an ill-posed problem which re-
quires special numerical treatment. The spectral func-
tion appears under the integral, an operator which has
smoothing properties. That means that some of the in-
formation on α2F(ω) is inevitably lost. Using inverse
theory our goal will be to extract as much of useful infor-
mation as we can, and set the limits on lost information.

Numerically the procedure of solving an integral equa-
tion reduces to an optimization problem, i.e. finding the
“best” out of all possible solutions30. Different criteria
can be adopted for the “best” solution, such as: 1) close-
ness to the data in the least square sense (we will call this

solution “exact”) or 2) smoothness of the solution. The
most useful solution is often a trade-off between these
two.

Eq. (4) is a Fredholm integral equation of the first
kind30; it may be rewritten as:

1

τ(ω, T )
=

∫

∞

0

dΩα2F (Ω, T )K(ω, Ω, T ) (5)

where 1/τ(ω, T ) is experimental data (from Eq. (2)),
K(ω,Ω, T) (contains the prefactor π/ω from Eq. (4)) is a
so-called kernel of integral equation, and α2F(ω, T) is the
unknown function to be determined. When discretized in
both ω and Ω Eq. (5) becomes:

1

τ(ωi, T )
=

N
∑

j=1

∆Ωjα
2F (Ωj , T )K(ωi, Ωj, T ), (6)

with i = 1, N . In matrix form:

~γ = K~a, (7)

where vector ~γ corresponds to 1/τ(ωi, T), vector ~a to
α2F(Ωj , T) and matrix K to K(ωi, Ωj , T) (Ref. 31). The
problem is reduced to finding vector ~a, i.e. the inverse of
matrix K. To perform this matrix inversion we adopt a
so called singular value decomposition (SVD)30 because
it allows a physical insight into the inversion process and
offers a natural way of smoothing. Matrix K is decom-
posed into the following form:

K = U [diag(wj)]V
T (8)

where U and V are orthogonal matrices (UT =U−1 and
VT =V−1), and diag(wj) is a diagonal matrix with el-
ements wj . The inverse of K is now trivial: K−1=V
[diag(1/wj)]U

T and the solution to Eq. (7) is than sim-
ply:

~a = K−1~γ = V [diag(1/wj)]U
T~γ. (9)

The elements of diagonal matrix wj are called singu-

lar values (s.v.); they are by definition positive and are
usually arranged in decreasing order. If all of them are
kept in Eq. (9) the “exact” solution, i.e. the best agree-
ment with the original data, is obtained. If needed, and
it almost always is when solving integral equations, the
smoothing of the solution (not the experimental data) is
achieved by replacing the largest 1/wj in Eq. (9) with
zeros, before performing matrix multiplications. This is
a common procedure of filtering out high frequency com-
ponents in the solution30.
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III. AN EXAMPLE

To demonstrate the usefulness of this procedure
we first analyze the existing IR data for underdoped
YBa2Cu3O6.6 with Tc= 59K (Ref. 8). Spectral function
W(ω) for this compound was previously determined using
Eq. (3), after 1/τ(ω, T ) had been (heavily) smoothed8.
Here we apply the numerical procedure described in the
previous section on the same data set. We start with
1/τ(ω, T = 10K) data in the range 10-3,000 cm−1, and
form a linear set of 300 equations to be solved (N= 300
in Eq. (6)), i.e. 300-element vectors ~a and ~γ and a
300×300 matrix K (Eq. (7)). We then decompose matrix
K (Eq. (8)) and choose how many of its singular values
we are going to keep. Finally we invert the matrix and
solve the system for vector ~a (Eq. (9)), i.e. α2F(ω) in the
range between 10-3,000 cm−1, at 300 points.

Left panels of Fig. 1 show results of α2F(ω) calcula-
tions for YBa2Cu3O6.6 at 10 K, for 6 different levels
and/or methods of smoothing. The right panels show the
scattering rate 1/τ(ω), along with the calculated scat-
tering rate 1/τcal(ω), obtained by substituting the cor-
responding α2F(ω) on the left back into Eq. (4). The
top panels (A1 and A2) display previously published
solution8 obtained using Eq. (3) after the data had been
smoothed “by hand”. The next two panels (B1 and B2)
present the “exact” solution using SVD, with all 300
singular values different from zero. This solution does
not appear to be very useful (note the vertical scale),
although it gives the best agreement between the ex-
perimental data 1/τ(ω) and calculated scattering rate
1/τcal(ω) (panel B2). One might say that the solution
contains too much information, as it unnecessarily re-
produces all the fine details in the original 1/τ(ω) data,
including the noise. The remaining panels show SVD cal-
culations with 30 (C), 20 (D), 15 (E) and 10 (F) biggest
s.v. different from zero. Surprisingly only a few singular
values (less that 10% of the total number) are needed to
achieve similar spectral function as obtained previously
by smoothing the data “by hand” (panel A1). Indeed
Fig. 2 shows that approximately 12 or 13 non-zero singu-
lar values are needed. Note however that neither of the
curves matches exactly the curve obtained from the data
smoothed “by hand”.

The α2F(ω) spectra (Fig. 2) display characteristic
shape with a strong peak at 480 cm−1, followed by a
strong dip at around 750 cm−1. In addition there is
weaker structure at both lower and higher frequencies.
Carbotte et al.8 argued that the main peak is due to
coupling of charge carriers to a collective bosonic mode
and that it occurs at the frequency ∆ + ωs, where ∆ is
the maximum gap in the density of states and ωs is the
frequency of bosonic mode. They also claimed that in
optimally doped Y123 the spectral weight of the peak
matches that of neutron (π,π) resonance and is sufficient
to explain high transition temperature in the cuprates.
On the other hand Abanov et al.24 argued that the main
peak due to coupling to collective mode should be at
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FIG. 1: Spectral function α2F(ω) for underdoped
YBa2Cu3O6.6 with Tc=59 K. The left panels show α2F(ω)
and the right panels the experimental 1/τ (ω) along with
1/τcal(ω) calculated from the corresponding spectral function
(Eq. (4)). The top panel shows previously published spec-
tral function8 obtained from the scattering rate smoothed “by
hand”. The other five pairs of panels are the data obtained
using inverse theory. Different number of singular values are
kept in the calculations, which results in different levels of
smoothing. Note that the vertical scale in panels B1 and C1
is different.

2∆ + ωs. Moreover they argued that the fine structure
at higher frequencies in α2F(ω) has physical significance:
the second dip above the main peak should be at ω=4∆
and the next peak at ω=2∆+2ωs.

From Figs. 1 and 2 we conclude that extreme caution
is required when performing numerical procedures based
on the data smoothed “by hand”. In Fig. 2 the strongest
peak at around 480 cm−1 is fairly robust, although its
spectral weight does change a few percent. However
the other structures are very dependent on smoothing.
The strongest dip shifts from 780 cm−1 with 11 s.v., to
760 cm−1 with 12 s.v. and 750 cm−1 with 13 s.v. In the
data smoothed “by hand” it is at 730 cm−1. The spec-
tral weight of the dip also varies. It was suggested by
Abanov et al.24 that the main dip, not the peak, is a
better measure of the frequency 2∆+ωs. However based
on our calculations (Fig. 2) the dip is even more sensi-
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FIG. 2: Spectral function α2F(ω) for underdoped
YBa2Cu3O6.6 with Tc= 59K obtained by smoothing the ex-
perimental 1/τ (ω) data “by hand”8 and with SVD with 11,
12 and 13 s.v.

tive to smoothing then the peak. Other peaks and dips
do not display any correlation with the number of s.v.,
i.e. the level of smoothing.

IV. MODEL CALCULATIONS

The question we must now try to answer is how many
s.v. to keep in inversion calculations. To address this is-
sue we have performed calculations based on model spec-
tral function with two Lorentzians:

α2F (ω) =
ω2

p,aω2

(ω2
a − ω2)2 + (γaω)2

+

ω2
p,bω

2

(ω2
b − ω2)2 + (γbω)2

, (10)

with ω2
p,a=50,000 cm−1, ωa=500 cm−1, γa= 200 cm−1,

ω2
p,a=250,000cm−1, ωa=2,000 cm−1 and γa= 800 cm−1.

This analytic form was chosen to mimic the “real” spec-
tral function in cuprates (see for example Fig. (6) be-
low). From this α2F(ω) the scattering rate was calcu-
lated (not shown) using Eq. (4) and then the formalism
of inverse theory (Section II) was applied. Figure 3 shows
the model spectral function (gray lines) along with the
spectral function determined using inverse theory (black
lines). We see that the “exact” solution (with all 300 s.v.)
does not agree well with the model; this is due to numeri-
cal instabilities induced by smallest s.v. As we reduce the
number of s.v. (cut-off the smallest) the agreement im-
proves and for 100 and 50 s.v. the inversion reproduces
the original spectral function. As we reduce the num-
ber of s.v. further the agreement begins to deteriorate

and negative values in α2F(ω) appear again. Obviously
these negative values are not real and simply reflect the
fact that too few s.v. do not contain enough informa-
tion to reproduce the original data. Note however that
even with very few s.v. the main features of the spectral
function are reproduced, as the main peaks and dips are
roughly at correct frequencies (see for example calcula-
tions with 20, 15 and 10 s.v.). Their spectral weights are
not reproduced though.

The optimal number of s.v. is always a trade–off be-
tween numerical precision and closeness to the data. Un-
fortunately, unlike model calculation shown in Fig. 3,
in calculations with real data those two criteria are not
well separated. Therefore one must be very careful when
quantitatively analyzing the fine structure and their spec-
tral weight in α2F(ω), as different levels and/or meth-
ods of smoothing can cause spurious shifts of the peaks
and/or redistribution of their weights. For example vi-
sual inspection of 1/τcal(ω) on the righthand side of Fig. 1
cannot distinguish between different levels of smoothing
[compare 1/τcal(ω) in panels C2, D2 or E2], however even
the smallest differences manifest themselves in the spec-
tral functions in the left panels.

An advantage of using inverse theory for extracting
α2F(ω) is that we can quantify the smoothing proce-
dure by specifying the number of s.v. different from zero
in Eq. (9), thus eliminating arbitrariness related with
smoothing of experimental data “by hand”. This is espe-
cially important when quantitatively comparing results
from two different 1/τ(ω) curves. Note however that if
the data sets have different signal-to-noise levels, keeping
the same number of s.v. will result in different levels of
smoothing. We will encounter this problem below when
we study doping dependence of α2F(ω) in Y123, since
available data are from different sources.

Similar problems arise when analyzing temperature de-
pendence of the data. Keeping the same number of sin-
gular values is again not the best way to achieve similar
levels of smoothing. Fig. 4A shows the absolute values of
first (biggest) 200 s.v. at different temperatures. They
drop quickly (note the log scale) and such small wi pro-
duce large oscillations in the solution. To avoid that one
cuts–off, i.e. replaces 1/wi with zeros in Eq. (9). As
Fig. 4A shows s.v. are also very temperature dependent,
and there are different ways to make the cut. As men-
tioned above keeping the same number of s.v. different
from zero (“vertical cut”) is not a good way, as that would
imply including smaller s.v. at higher temperatures and
therefore higher frequency components into the solution.
In such cases it is better to make “horizontal cuts”, i.e.
keep the s.v. in the same range of absolute values. This
implies different number of s.v. at different tempera-
tures, but the oscillations in all the solutions should be
approximately the same.
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FIG. 3: Model calculations of spectral function with two
Lorentzians (Eq. 10). The “exact” solution, with all 300 s.v.,
does not agree well with the model because small singular
values produce numerical instabilities in the solution. On the
other hand if too few s.v. are kept unphysical negative re-
gions appear. The model spectral function is recovered with
50–100 s.v.

V. PROBLEM OF NEGATIVE VALUES

An obvious problem with these (Figs. 1 and 2) and pre-
vious (Ref. 8,21,22,23,24,25,26) calculations is that they
all produce non-physical negative values in the spectral
function. The latter function is proportional to boson
density of states F(ω) and therefore cannot be negative.
The important issue we must address is the origin of these
negative values. As shown in Fig. 3 negative values can
appear because of numerical problems: either because
small s.v. produce numerical instabilities, or because too
few s.v. do not contain sufficient information to repro-
duce the original data. These negative values are not
real and can be eliminated either by choosing appropri-
ate number of s.v., or by some other numerical technique,
as we will show below.

However, negative values can also have a real physical
origin, and they cannot be eliminated by any numerical
procedure. Namely, all the methods we have discussed
(Eqs. (1), (3) or (4)) were developed for normal state,
but are frequently used in the (pseudo)gapped state24,32.
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FIG. 4: Singular values at different temperatures. Top panel:
first (biggest) 200 s.v. from IR; bottom panel: all 100 s.v.
from ARPES. When analyzing temperature dependence of
the spectral function “horizontal cuts” are more appropriate,
assuming all data sets have the same signal-to-noise ratio. On
the other hand for doping dependence studies (at the same
temperature) “vertical cuts”, i.e. the same number of s.v.,
should produce similar levels of smoothing.

In order to illustrate the insufficiency of these models to
account for a (pseudo)gap in the density of states we have
performed inversion calculations on BCS scattering rate.
Fig. 5 shows that scattering rate (right panels) calcu-
lated within BCS with Γ= 2∆=400 cm−1, at T/Tc=0.1.
The spectral functions calculated with different number
of s.v., i.e. different levels of smoothing are shown in left
panels. Surprisingly they look very similar to those pro-
duced by coupling of carriers to collective bosonic mode
(see Figs. 1 and 2): there is a strong peak roughly at the
frequency of the gap, followed by a strong dip and fine
structure which is smoothing dependent.

The main issue now is whether one can distinguish be-
tween real, physical negative values arising because of
the gap in the density of states and those arising be-
cause of numerical instabilities. Using inverse theory we
can also address this problem. A so called deterministic

constraints30 can be imposed on the solution during the
inversion process. These deterministic constraints reduce
the set of possible solutions from which the “best” solu-



6

-3

0

3

6 A1

BCS

 

 

 

α2 F
(ω

)

20 s.v.

0

200

400

600A2

 1/τ
BCS

 1/τ
cal

 

 

 

 

-2

0

2

4 B1
 

 

 

 

15 s.v.

0

200

400

600B2

 

 

 

0 1000 2000

-1

0

1

2
C1

 

Frequency [cm-1]

 

10 s.v.

1000 2000 3000
0

200

400

600C2

 

 

1/τ [cm
-1]

 

FIG. 5: Model calculations of spectral function from BCS
scattering rate. Left panels display calculated spectral func-
tion α2F(ω) and the right panels the BCS scattering rate (also
shown with dotted lines in left panels) and 1/τcal(ω) calcu-
lated from the spectral function on the left. A gap in the
density of states produces similar structure in α2F(ω) as does
the coupling to a bosonic mode.

tion will be picked. In the case of spectral function an
obvious constrain is α2F(ω)≥ 0 for all ω. However other
constraints are also possible. In fact one of them, that
α2F(ω)=0 above some cut-off frequency (3,000 cm−1),
was implicitly assumed in all previous calculations, as the
limits in the integral in Eq. (4) run from zero to infinity,
and the sum in Eq. (6) runs only up to 3,000 cm−1.

Numerically one applies the constraints during an it-
erative inversion process30. The initial solution ~a0 for
the iteration can be obtained either from Eq. (7) or more
generally using a so called regularization:

KT~γ = (KT K + δH)~a, (11)

where H is a so called regularization matrix and δ is a
regularization parameter. For δ=0 (no regularization)
Eq. (11) reduces to Eq. (7). Eq. (11) can also be solved
using SVD. Once the initial solution ~a0 is found, one
applies iteration, imposing the constraint α2F(ω)≥ 0 in
every step:
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FIG. 6: Spectral function α2F(ω) for underdoped
YBa2Cu3O6.6 with Tc=59 K. A deterministic constraint
α2F(ω)≥0 is applied iteratively (Eq. (12)). The top two pan-
els show the initial solution with 20 s.v. The other four sets
of panels display intermediate solutions for several different
levels of iterations.

~an+1 = P [(I − βδH)~an + βKT (~γ − H~an)], (12)

where β is the iteration parameter and P denotes an op-
erator that sets all the negative values in the solution to
zero. The results of these calculations for YBa2Cu3O6.6

with Tc=59K are shown in Fig. 6. The initial solution
(top panels) was obtained from SVD with 20 s.v. and no
regularization. This solution was then iterated different
number of times: 100 (panel B), 200 (C), 500 (D) and
1000 (F). For each intermediate solution the scattering
rate 1/τcal(ω) (gray lines) was calculated using Eq. (4).

Clearly as the number of iterations increase the agree-
ment between 1/τ(ω) and 1/τcal(ω) becomes better, but
it never becomes as good as the one with negative values
(top panel). It appears that the numerical process con-
verges, although very slowly, to the solution with nega-
tive values: some frequency regions in α2F(ω) have sim-
ply been cut–off by the program. The position of the
main peak is not affected, but its intensity has been re-
duced significantly. We also emphasize that the structure
in the spectral function at ω > 1,000 cm−1 is essential for
obtaining linear frequency dependence of 1/τ(ω) up to
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very high frequencies. We will return to this important
issue in Section IX below.

Therefore in the case of YBa2Cu3O6.60 we have been
able to eliminate negative values and at least in principle
obtain α2F(ω) which is always positive. This indicates
that the structure in the spectral function is (predomi-
nantly) due to coupling to bosonic mode and not the gap
in the density of states. On the other hand, we have not
been able to obtain good BCS scattering rate without
negative values in spectral function (not shown). This is
not unexpected as the form of spectral function is entirely
due to a gap in the density of states (no bosonic mode),
which Eqs. (1) and (4) do not take into account. We have
encountered similar situation in some cuprates. Fig. 7
displays inversion calculations for several Y123 samples
with different doping levels and/or Tc: YBa2Cu3O6.60

with Tc = 57K (Ref. 34), YBa2Cu3O6.60 with Tc = 59K
(Ref. 8) and YBa2Cu3O6.95 with Tc = 91K (Ref. 34). All
calculations are for T=10K, with a fixed number of 15
s.v. As can be seen from Fig. 7 the peak systemati-
cally shifts to higher energies as doping and Tc increase:
430 cm−1 in x=6.6 with Tc=57K, 480 cm−1 in the sec-
ond x=6.6 with Tc=59K and 520 cm−1 in x=6.95. For
both 6.6 samples we have been able to obtain relatively
good inversions (dashed lines) without negative values
in the spectral function. That is not the case for 6.95
sample where without negative values the inversion fails
badly (see dashed line in the bottom–right panel). This
indicates that the form of scattering rate is probably a
combination of coupling to collective mode and a gap in
the density of states, as pointed out by Timusk35.

VI. ELECTRON-BOSON COUPLING VS.

ENERGY GAP

As demonstrated in previous sections similar shapes of
α2F (ω) are produced by coupling to bosonic mode and
a gap in the density of states when equations for the
normal state (Eq. (1) or (4)) are used. It is essential
to discriminate these two contribution because they usu-
ally appear together. To address this problem we have
to apply Allen’s formula for the scattering rate in the
superconducting state19:

1

τ(ω)
=

2π

ω

∫ ω−2∆

0

dΩ(ω−Ω)α2F (Ω)E
[

√

1 −
4∆2

(ω − Ω)2

]

(13)
In this equation E(x) is the complete elliptic integral of
the second kind and ∆ is a gap in the density of states.
For ∆=0 Eq. (13) reduces to Eq. (1) for the normal state.
Numerically Eq. (13) is again Fredholm integral equation
of the second kind and the same numerical procedure for
its solution can be used.

We have performed inversion of the data for optimally
doped YBa2Cu3O6.95 using Eq. (13). Fig. 8 shows in-
version calculations for different values of the gap ∆.
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FIG. 7: Doping dependence of spectral function α2F(ω)
for (A) YBa2Cu3O6.60 with Tc =57 K (Ref. 34),
(B) YBa2Cu3O6.60 with Tc = 59K (Ref. 8) and (C)
YBa2Cu3O6.95 with Tc = 91K (Ref. 34). All curves are for
the lowest measured temperature T≈ 10K. “Vertical cuts”,
i.e. the same number of singular values (15), were made for
all three data sets. Left panels display 1/τ (ω) data along
with 1/τcal(ω). Dashed lines are the results of iterative
calculations. Relatively good fits without negative values in
α2F(ω) can be obtained for both YBa2Cu3O6.60 samples,
but not for YBa2Cu3O6.95.

The top panels display calculations with ∆=0, which is
equivalent to previous calculations using Eq. (4) (Fig. 7).
As we already discussed it, the spectrum is dominated
by a pronounced peak, followed by a large negative
deep. Unlike YBa2Cu3O6.6 for which this negative deep
can, at least in principle, be eliminated, the deep in
YBa2Cu3O6.95 cannot be eliminated (Fig. 7) and in the
previous section we suggested that that is because of the
gap. Indeed when finite values of the gap are used in
Eq. (13) this negative deep following the main peak is
strongly suppressed; calculated spectral function positive
for almost all frequencies (Fig. 8).

The problem with Eq. (13) is that it is based on s-
wave energy gap at T=0K. These two assumptions imply
that the scattering rate must be zero below 2∆, which is
never the case with cuprates because of the d-wave gap
and because the data was taken at finite temperature.
In spite of this, Eq. (13) is useful because it can provide
some insight into charge dynamics in cuprates. Fig. 9
displays calculations of scattering rate based on model
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FIG. 8: Spectral function α2F(ω) for optimally doped
YBa2Cu3O6.95 calculated from Eq. (13) for the scattering
rate in the superconducting state. Different values of the
gap ∆=0–200 cm−1 were used in the calculations. For ∆=0
there is a pronounced deep following the main peak. How-
ever when finite values of the gap are introduced the negative
deep gradually disappears and the main peak shifts to lower
energies.

spectral function α2F(ω) shown with thin line. When the
gap is zero the data qualitatively looks like underdoped
YBa2Cu3O6.6: at higher frequencies it is linear and it is
suppressed below certain energy (black line). However for
the finite values of the gap (∆=200 cm−1) the data looks
more like optimal YBa2Cu3O6.95: there is overshoot just
above the suppressed region (gray line).

Based on these model calculations it appears that the
response of YBCO on the underdopd side is dominated
by coupling to bosonic mode, whereas at optimal dop-
ing the gap plays more prominent role. Indeed recent
ARPES and tunneling measurements have shown that
the Fermi surface of cupares is continuously destroyed
with underdoping36,37. On the underdoped side antin-
odal states do not exist (they are incoherent) and the IR
response is dominated by nodal states which are coherent
and not gaped. On the other hand the IR response at
optimal doping is more complicated, because both antin-
odal (gaped) and nodal (not gaped) states are coherent
and contribute to the IR response.
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FIG. 9: Model spectral function α2F(ω) (thin line) is used
to calculate the scattering rate 1/τcal(ω) from Eq. (13). For
∆=0 calculated scattering rate resembles 1/τ (ω) of under-
doped YBa2Cu3O6.60 (Fig. 7). However for finite values of
the gap calculated scattering rate resembles 1/τ (ω) of opti-
mally doped YBa2Cu3O6.95: there is an overshoot following
the suppressed region (Fig. 7).

VII. ELECTRON–BOSON SPECTRAL

FUNCTION OF BI2212

In this section we analyze the temperature dependence
of the spectral function for optimally doped Bi2212 with
Tc=91K. The same data set has been analyzed before26

using Eq. (3). The calculated spectra (Fig. 10) look qual-
itatively similar to those obtained on Y123 (Fig. 2), with
a strong peak in the far-IR range followed by a dip, and
high frequency contribution that extends up to several
thousand cm−1. To achieve similar levels of smoothing
at different temperatures “horizontal cut” has been made
(Fig. 4A).

In the normal state at T=100K we identify a peak at
≈ 400 cm−1 (50meV). Note that the peak is at somewhat
lower energy then in Ref. 26, which can be traced back
to the use of Eq. (3), which is strictly speaking valid only
at T=0K. We also note that the peak is observed above
Tc, unlike the (π, π) resonance detected in INS only in
the superconducting state46.

As temperature decreases below Tc the peak shifts to
higher energies: 430 cm−1 at 80K, 520 cm−1 at 50K and
560 cm−1 at 10K. At the lowest temperature the spec-
tral function is almost identical to previously reported26,
which confirms that at 10K Eqs. (3) and (4) are equiv-
alent. According to theoretical considerations8,24 in the
superconducting state the peak should be off-set from the
resonance frequency of the (π, π) peak (ωs ≃ 43meV) by
one or two gap values (∆=34meV, Ref. 48). At 10K the
peak is at 70meV, somewhat lower than ∆+ωs=77meV
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FIG. 10: Temperature dependence of the spectral func-
tion α2F(ω) for optimally doped Bi2Sr2CaCu2O8−δ with
Tc= 91 K. As temperature increases the main peak shifts to
lower energies and looses intensity, but seems to persist even
above Tc.

(Ref. 8) and significantly lower than 2∆ + ωs= 111meV
(Ref. 24). This result is in contrast with optimally doped
Y123 where the IR peak at 66meV (Fig. 7) is in relatively
good agreement with ∆ + ωs=27meV+41meV= 68meV
Ref. 8.

VIII. INVERSION OF ARPES DATA

Recently it has been argued based on ARPES
data12,13,14,15 that in cuprates electrons are strongly cou-
pled to phonons and that such strong coupling might
be responsible for high Tc. In light of these suggestions
there have been several attempts to determine α2F(ω)
from ARPES data18,38,39. Inversion by Verga et al.38 was
based on the imaginary part of the self-energy Σ2(ω),
obtained from the real part Σ1(ω) through Kramers–
Kronig transformation. The spectral function was then
calculated by differentiation of Σ2(ω), a procedure which
necessarily requires smoothing “by hand”. On the other
hand Schachinger et al.39 have modeled the spectral func-
tion with analytical functions and then used these mod-
els to simultaneously fit both the IR and ARPES spec-

tra. Maximum Entropy Method (MEM) has recently
been used to invert ARPES data and obtain α2F(ω) for
beryllium surface Be(1010) (Ref. 18) and LSCO (Ref. 40).
Here we apply the same inversion method we used for IR
to ARPES. The procedure of extracting α2F(ω) is based
on standard expression for the real part of quasiparticle
self-energy Σ1(ω) (Ref. 41):

Σ1(ω) =

∫

∞

0

dΩα2F (Ω) ·

ℜ

[

Ψ
(1

2
+ i

Ω − ω

2πT

)

− Ψ
(1

2
− i

Ω + ω

2πT

)]

,(14)

where Ψ(x) is digamma function. The real part of the
self-energy Σ1(Ek) can be obtained from ARPES data
as41:

Σ1(Ek) = Ek − ǫk, (15)

where Ek is the renormalized dispersion measured in
ARPES experiments and ǫk is the bare electron disper-
sion. As the latter function is not independently known,
a common procedure when using Eq. (15) is to assume
a linear bare dispersion (ǫk ∼ k) and no renormalization
at higher energies, i.e. Ek=ǫk above ≈ 250meV. Expres-
sion (14) is again a Fredholm integral equation of the
first kind and the same numerical technique described in
Section II can be used for its solution. Similar to IR,
“by hand” smoothing of the data is not needed, as SVD
procedure will allow us to smooth the solution by reduc-
ing the number of non-zero s.v. Since the resolution of
ARPES data is poorer than IR, in all calculations we
used vectors and matrices with dimensions 100 instead
of 300.

As an example of this procedure in Figure 11 we first
present spectral function α2F(ω) calculated from ARPES
data for molybdenum surface Mo(110) (Ref. 42). As be-
fore, left panels show the calculated spectral function and
right panels measured ARPES dispersion Ek and disper-
sion calculated from Eq. (14) Ek,cal using the correspond-
ing spectral function on the left. The spectral function
has a characteristic shape, with a strong peak at around
200 cm−1 and weaker structure at both higher and lower
frequencies. Similar to IR, position of the main peak is
fairly robust against smoothing, but weaker peaks and
dips are not. The dashed lines in the left-hand panels
represent α2F(ω) calculated based on band structure43.
Low data resolution and loss of information during the
inversion do not allow us to resolve the fine structure in
α2F(ω) that has been predicted numerically43. At higher
energies (ω >

∼ 400 cm−1) the spectral function is effec-
tively zero, in accord with band structure calculations.

These relatively simple calculations for molybdenum
surface Mo(110) have uncovered the limitations of inver-
sion of ARPES data. Fine details of the spectral func-
tion, especially narrow peaks, cannot be resolved as they
are convoluted in the experimental data (Eq (14)). Max-
imum information that can be obtained is the frequency
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FIG. 11: Spectral function α2F(ω) of Mo(110) surface at
70 K extracted from ARPES data42. Three different levels
of smoothing are shown with 10, 15 and 20 s.v. Dotted lines
in left panels represent theoretical spectral function43.

region where there is significant contribution to α2F(ω).
It has recently been claimed based on MEM inversion of
ARPES data that the sharp peaks identified in α2F(ω)
spectra are due to specific phonon modes18,40. Based
on our calculations we speculate that it is unlikely that
such fine details of the spectra could be resolved by any
inversion procedure.

Figure 12 presents the data for optimally doped Bi2212
(Tc=91K) at 130K and 70K taken along nodal direc-
tion. Similar to IR calculations in Fig. 10, to achieve
approximately the same level of smoothing different num-
ber of s.v. values were kept in calculations at different
temperatures: 8 (out of 100) at 130K and 10 at 70K.
Within the error bars the main peak does not shift with
temperature: it is at 440 cm−1 at both 130K and 70K.
However the peak does narrow and gains strength at 70K
(Ref. 47). Below 70K ARPES dispersion displays almost
no temperature dependence. Note also that unlike IR,
there seems to be less problems with negative values in
ARPES α2F(ω) calculations. In particular there is no
pronounced dip following the main peak, which might
be related to the fact that the APRES scans were taken
along (π, π) direction where the magnitude of the gap
goes to zero. Another important difference compared
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FIG. 12: Temperature dependence of spectral function
α2F(ω) of optimally doped Bi2212 extracted from ARPES
data (along nodal direction) using inverse theory. Left panels
show α2F(ω) spectra calculated from Eq. (14), and right pan-
els ARPES quasiparticle dispersion Ek (gray symbols) and
calculated dispersion Ek,cal (full lines) using corresponding
spectral function on the left. Also shown with dashed lines
are bare quasiparticle dispersions ǫk used to calculate Σ1(ω)
(Eq. (15)).

with IR is that there is no high frequency component
in ARPES: the whole contribution to α2F(ω) is concen-
trated at ω <

∼ 750 cm−1.

IX. IR–ARPES COMPARISON

In the previous section the inversion calculations have
uncovered several important differences between the
spectral function extracted from IR and ARPES. In all
ARPES calculations the strong dip following the main
peak was absent, which we suggested was due to the ab-
sence of the gap along the (π, π) symmetry direction.
More importantly, there was no high frequency contri-
bution extending up to several thousand cm−1 in any
ARPES calculations. In this section we will make an ex-
plicit comparison between IR and ARPES spectral func-
tions and discuss their similarities and differences.

First it should be emphasized that ARPES α2F(ω)
from Eq. (14) is not the same as the IR from
Eqs. (1) and (4)39,41. ARPES is a momentum resolv-
ing technique, whereas IR averages over the Brillouin
zone. More importantly ARPES probes the equilibrium
α2F(ω) (single-particle property), whereas IR measures
transport α2

trF(ω) (two-particle property)41. Recently
Schachinger, et al. discussed the difference39 and sug-
gested that in the simplest case these two functions might
differ only by a numerical factor of 2–3. Therefore it
would be very instructive to directly compare the spec-
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different bare dispersion (with renormalization effects up to
0.5 eV).

tral functions extracted from IR and ARPES. However
technical reasons make this comparison difficult. Present
resolution of ARPES data of ≈ 10meV is at least one or-
der of magnitude less than IR (typically <

∼ 1 meV in the
frequency range of interest). This large discrepancy in
resolution requires different levels of smoothing, which
can affect the solution. Therefore we cautiously compare
calculated α2F(ω)’s, relying only on robust features, as
discussed in the previous sections.

The most complete comparison can be made for op-
timally doped Bi2212, for which high quality IR26 and
ARPES44 data sets exist, all obtained on the samples
from the same batch45. Although data at different tem-
peratures are available, we believe that will not change
the main results and conclusions in any significant way,
as ARPES data display little temperature dependence
below 70K (Ref 44). Fig. 13 shows α2F(ω) from both IR
and ARPES for optimally doped Bi2212 with Tc= 91K.
The α2F(ω) from ARPES is multiplied by a factor of 3.
The agreement between the positions of the main peak
in both data sets (≈ 500 cm−1) is very good. This agree-
ment is actually surprising and unexpected. As discussed
in Sections III and VII the main peak in IR spectral func-
tion should be off-set from the frequency of the neutron
peak ωs by either one8 or two24 gap values ∆. On the
other hand in ARPES data the gap should not play a role:
the data were taken along the nodal directions where
the gap is zero. Therefore almost perfect agreement be-
tween the positions of IR and ARPES peaks (and dis-
agreement with INS peak - see Section VII) in optimally
doped Bi2212 is puzzling and calls for further theoretical
studies.

Another important difference between IR and ARPES

is the contribution in IR that extends up to very high
energies. There is no such contribution in any ARPES
data we have available (Section VIII). Therefore based
on ARPES data alone one can argue that the observed
contribution to α2F(ω) is either due to phonons or spin
fluctuations. On the other hand the high frequency com-
ponent in always present in IR and is necessary to keep
1/τ(ω) increasing, approximately linearly with ω. Fig-
ure 14 displays calculations of α2F(ω) for YBa2Cu3O6.6

with Tc=59K up to almost 1 eV (Ref. 8). Both in-
version with negative values (top panels) and iterative
calculations with positive values (middle panels) result
in spectral function with significant contributions up to
≈ 0.85 eV. If this contribution is cut off, for example at
1,000 cm−1 (bottom panels), calculated scattering rate
deviates strongly from experimental data, as 1/τcal(ω)
tends to saturate above ∼ 2,000 cm−1. This result ar-
gues against phonons as the origin of the structure in
α2F(ω), as phonon spectrum cannot extend up to such
high frequencies. However phonon contribution below
≈ 1,000 cm−1 cannot be ruled out.

The absence of high-frequency contribution in ARPES
is puzzling and seems to indicate that the difference be-
tween IR and ARPES spectral function might be more
than just a numerical prefactor. On the other hand it
may also signal intrinsic problems with our procedure of
extracting Σ1(Ek) from ARPES dispersion49. As men-
tioned in Section VIII, bare electron dispersion ǫk is
not known and some assumptions must be made before
Eq. (15) can be used. The most common assumptions
are: 1) linear bare dispersion ǫk and 2) no renormal-
ization above certain cut-off frequency. We have em-
ployed these assumptions in all our calculations, with
a cut-off of typically ≈ 250meV. The use of both of
these assumptions in highly unconventional systems like
cuprates is questionable and requires further theoretical
treatment49.

In order to check the effect upper cut-off energy has on
the solution we have performed α2F(ω) inversion for op-
timally doped Bi2212 (Fig. 12) assuming that the renor-
malization persist up to 0.5 eV, instead of 0.25 eV. Fig. 13
also shows this new calculation with dashed line and ob-
viously there is very little difference: the main peak is in
good agreement and there is no significant contribution
above ≈ 800 cm−1, even though the renormalization ex-
tends up to 0.5 eV. We speculate that in order to obtain
spectral function similar to IR, either the renormalization
must persist up to several eV or some more sophisticated
form of the bare dispersion ǫk must be used49.

X. SUMMARY AND OUTLOOK

A new numerical procedure of extracting electron–
boson spectral function from IR and ARPES data based
on inverse theory has been presented. The new method
eliminates the need for differentiation and smoothing “by
hand”. However we also showed that the information
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FIG. 14: Spectral function α2F(ω) extracted from IR data
for underdoped YBa2Cu3O6.6 with Tc= 59 K and calculated
up to ≈ 0.85 eV. Top panels display calculations with negative
values (Section II). Middle panels are iterative calculations
with 2,000 iterations (Section V). In both cases significant
contribution to α2F(ω) persist up to very high frequencies.
Bottom panels display the result of calculation of 1/τcal(ω)
with high frequency contribution to α2F(ω) cut-off (above
1,000 cm−1). In this case the calculated scattering rate tends
to saturate at higher energies.

is convoluted and fine details of α2F(ω) cannot be ex-
tracted, no matter what numerical technique one uses.
This especially holds for ARPES, whose current data res-
olution is particularly poor compared to IR.

Using this new procedure we have extracted α2F(ω)
from IR and/or ARPES data in a series of Y123 and
Bi2212 samples. The calculations have uncovered sev-
eral important differences between IR and ARPES spec-
tral functions. All IR spectral functions contain, in addi-
tion to a strong peak at low frequencies (ω <

∼ 500 cm−1),
contributions that extend up to very high energies (typi-
cally several thousand cm−1). On the other hand none of
ARPES spectral functions display such high energy con-
tribution. Therefore we concluded that based on ARPES
results one cannot distinguish between phonon and mag-
netic scenarios, as the main peak in α2F(ω) can have ei-
ther (or both) magnetic or phonon components. However
in all IR results the observed high frequency contribution
extends to much higher than typical phonon frequencies,
the result which argues against phonon mechanism.

Finally, the observed differences between IR and
ARPES have prompted us to speculate that α2F(ω) from
these two experimental techniques might contain quali-
tatively different information. Alternatively, we suggest
that the whole concept of coupling of charge carriers to
collective boson modes in the cuprates needs to be re-
vised.
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